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Using a thermal-lattice Boltzmann model, we examine the rich phase behavior that develops when partially
miscible fluids evolve in the presence of a vertical temperature gradient, which encompasses the critical
temperatureTc of the mixture. In particular, a binaryAB fluid is confined between two plates in a gravitational
field. The upper plate is fixed belowTc and hence, the nearby fluid phase separates intoA-rich andB-rich
domains. The lower plate is fixed above the temperatureTc, and the surrounding fluid is in the homogeneous
phase. A coupling between convectionsdriven by the temperature gradientd and phase separation gives rise to
unique pattern formation. A number of regimes are identified: regularly spaced stripes, convective steady-state
columns, the periodic disturbance of these columns, and finally, chaotic dripping from the upper surface. These
results highlight dynamical behavior in partially miscible mixtures.
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The lava lamps of the early 1960s not only riveted our
attention but also embodied fascinating physics, which actu-
ally plays a crucial role in the growth of semiconductor crys-
tals, the processing of polymeric materials, and the formation
of heterogeneous geological structuresf1g. Common to all
these systems is the evolution of complex fluids in the pres-
ence of a temperature gradient. We focus on one example of
these intriguing systems: a phase-separatingAB binary fluid
that is confined between two plates, as depicted in Fig. 1sad.
The bottom plate is hot and is above the fluid’s critical tem-
perature,Tc, while the top plate is cold and lies belowTc. In
this scenario, the interplay between convection and phase
separation can potentially lead to complex dynamical behav-
ior. In particular, near the bottom plate, the mixture forms a
single, homogeneous phase. Since this region is relatively
hot, the fluid becomes less dense, and buoyancy drives it
towards the top, colder plate, where the mixture phase sepa-
rates into distinct domains. Gravity will act on this relatively
heavier mixture and force the fluid downward, whereupon
the entire process repeats. Therefore, one can expect not only
the creation of convective patternsssimilar to Rayleigh-
Bénard convectiond, but also unique morphological patterns
within the phase-separated fluid. In this paper, we use a lat-
tice Boltzmann scheme to examine the structural evolution
and dynamics of this system. Significant progress has been
made in understanding convection in miscible binary fluids,
as well as the role of interfacial phenomena in convection of
immiscible fluids f2–4g. However, the system we study,
which encompasses phase separation and thermal convec-
tion, has not been extensively examined. The few existing
experimental studies have yielded specific cases of pattern
formation f1,5g; however, these studies involved thin films,
for which Marangoni convection is dominant and gravita-
tional effects can be neglected. With respect to theoretical
studies, Araki and Tanakaf6g examined the phase separation
of a binary mixture subjected to a horizontal temperature
gradient. Their model assumed that the density of the fluids
does not depend on temperature. A unique feature of the
model presented here is that we make noad hocassumptions
about the functional dependencies of the density and tem-
perature. Rather, we explicitly simulate all of the continuum
equations that capture the behavior of the system. Our stud-

ies uncover regimes of spontaneous pattern formation, which
are shown in Figs. 1sbd–1sfd. More generally, the technique
can potentially provide a powerful means of probing the in-
terchange between temperature and structural evolution that
occurs during the processing of a vast variety of materials.

To obtain the observed patterns, we simulate a two-
dimensional system, with they direction pointing upwards
against gravity. The upper and lower edges of the system are
fixed at temperaturesTc−DT/2 andTc+DT/2, respectively.
TheA andB fluids have the same particle massm and expe-
rience a repulsive interaction, whose strength is characterized
by the parameterl. The Landau free-energy functional for
the system is
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The first term is the bulk free-energy densityf7,8g
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whereT is temperature,r=rA+rB is the total mass density,
and f=rA−rB is the mass density difference. The gradient
terms, involvingkf and kr, represent the energy associated
with surface tension, and the final term is the gravitational
potential.

The dynamics of the system is determined byf9g
]tr + ]asruad = 0,

]tsruad + ]bsruaubd = − ]bPab + ]bsab − grêya,

]tsred + ]asreuad = − ]aqa + s− p0dab + sabd]aub,

]tf + ]asfuad = − ]aia. s3d

These equations ensure conservation of the total mass of
each component, and the total momentum and energy. Here,
ua is the fluid velocity,sab=rns]aub+]buad is the viscous
stress tensor,g is the acceleration due to gravity, andêy is a
unit vector in they direction. The pressure tensor, in Eq.s3d,
is given byf7g
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Pab = pdab + kf]af]bf + kr]ar]br, s4d

where
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and the bulk pressure and chemical potential are

p0 = skBT/mdr + lsr2 − f2d, s6d
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kBT

2m
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r − f
D − 2lf − kf¹2f. s7d

The internal energy per unit mass,e, is related to the
temperature by

re = cvskBT/mdr + lsr2 − f2d, s8d
wherecv= 3

2 is the specific heat per particle at constant vol-
ume. The first term comes from equipartition of energy, and
the second comes from the potential energy associated with
the repulsive interactionl. Hence, there is a latent heat as-
sociated with transformations between the phase-separated
and homogeneous states.

In the most general terms, the density difference flux,ia,
and the thermal flux,qa, can be written asf9g

ia = − a]amf − b]aT, s9d

qa = 1
2smf + bT/adia − k]aT. s10d

We ignore concentration diffusion resulting explicitly from
temperature gradients, hence, we setb=0. The first term on
the right-hand side of Eq.s10d comes from energy transport

FIG. 1. sad The system con-
sists of a confined binary fluid,
under the influence of gravity,
heated from below and cooled
from above. Periodic boundary
conditions were used in thex di-
rection, and the system size was
chosen to allow one convective
cell. sbd–sgd show the distribution
of the density differencef, where
the white regions areA rich, the
dark regionsB rich, and the gray
regions correspond tof,0. A
number of different regimes are
ordered by increasing Rayleigh
numberfsee Eq.s11dg: sbd regular
stripes with no Rayleigh-Bénard
convection sRa=1719d, scd sym-
metric steady-state columnssRa
=6875d, sdd asymmetric steady-
state columnssRa=6875d, sed pe-
riodic disturbance of the columns
sthe four frames show the evolu-
tion through one period, with time
t measured in simulations time-
steps, Ra=14 732d, andsfd chaotic
dripping from the upper surface
sRa=5.13105d. sgd A system that
is double the size ofscd sLx=360,
Ly=200d, with the same Rayleigh
number.
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from interparticle diffusion, and the last term from energy
conduction, wherek is the thermal conductivity. The mobil-
ity a is itself a function of the density difference. The sim-
plest choice, which is used in these simulations, isa
=adsr2−f2d, wheread is a constant. Note that in the limit
when f= ±r sthe pure phasesd, no diffusion occurs and
hence,a=0.

A thermal-lattice Boltzmann algorithmf10g is used to
simulate the continuum equationsfsee Eq.s3dg. The scheme
is an extension of that proposed by Palmer and Rectorf11g
for a single component fluid with no gravitational force.
Simulations were performed using a system of sizeLx=180
andLy=100 lattice units, with periodic boundary conditions
in the x direction, and nonslip, fixed temperature, neutrally
wetting boundaries on the upper and lower plates. In each
simulation, the initial state was given byr=r0f1
+sDT/2Tcdsy/Lydg sto ensure that the initial pressure is ap-
proximately constantd, f=0, and T=Tc−sDT/Lydy, with a
small random noise added to each.y is measured relative to
the center between the plates. Unless otherwise stated, we
use the parametersr0=1, g=0.01, ad=0.2, kB=1, k=1, kf

=0.2, kr=0.2, m=1, andl=2. By settingmf=0 in Eq. s7d,
we derive the critical temperatureTc=2mr0l /kB=4. The lat-
tice cell size wasDx=1 and the time step was taken to be
Dt=0.2, which is sufficiently small to allow all the simula-
tions to be numerically stable. Simulations were performed
for 23106 time steps, which was large enough to observe
the long-time behavior of the system. The viscosityn and
temperature differenceDT were varied between simulations.

At early times, fluid at a temperature belowTc phase
separates via spinodal decomposition. In the long-time limit,
a number of topologically distinct morphologies are identi-
fied. Examples of these are shown in Fig. 1. First, we de-
scribe the main features of each regime, and then we con-
struct a phase diagram to clarify the phase boundaries
between regimes.

When the viscosity of the fluid is sufficiently high, the
phase-separated fluid forms regular stripes of alternatingA-
and B-rich regions. This is illustrated in Fig. 1sbd, wheren
=3 and DT=0.5. Interestingly, the width-to-height ratio of
the domains was found to be independent of simulation pa-
rameters. Because of the temperature gradient, we observe
the Marangoni effect forcing fluid down the interfaces, and
consequently rising up the middle of each domain. Figure 2

shows the time evolution of the dimensionless Nusselt num-
ber, Nu=fLy/kDT, which gives the energy flux between the
two plates,f, relative to a purely conducting state. The curve
saturates at Nu.1.02, suggesting that the induced velocities
are small; however, they are still important in forming the
regular domain spacing. For instance, if we set the fluid ve-
locity to zero, such that the system is governed only by the
Cahn-Hilliard equation, then we do not see this regular pat-
terning. Instead, domains coarsen in time to reduce the glo-
bal interfacial energy. The regime in Fig. 1sbd suggests that
an applied temperature gradient can be exploited to create
patterned surfaces.

Figure 1scd shows a final steady-state morphology when
n=1.5 andDT=1. Fluid near the upper surface orders into
alternatingA and B horizontal bands. The phase-separated
fluid is heavier than that surrounding it, and is forced by
gravity downward, through columns. The velocity flow field
is similar to that observed in single-component Rayleigh-
Bénard convection. The pattern inf is advected with the
fluid to produce the striped column structure. Figure 1sdd
shows another possible steady-state situation. In this case,
the order ofA and B downward from the upper surface is
different on either side of the column, and asymmetric col-
umns are produced. This picture was taken from part of a
larger simulation containing six columns and using the same
parameters as above. In large systems, both symmetric and
asymmetric columns are observed. In the case of neutral wet-
ting, the local ordering of phases near the surface results
from the initial randomness. If the upper surface is preferen-
tially wetted by one component, then only symmetric col-
umns form.

For lower viscosities, the columns become unstable, re-
sulting in a regime we call “periodic disturbances;” a typical
example of this is given in Fig. 1sed shere n=0.7 andDT
=1d. The four frames show the time evolution of the system
through one period. It is probable that this instability results
from a competition between gravity, pushing the denser fluid
down, and surface tension, which drives a reduction in total
interface length. The periodicity is seen more clearly if we
examine the Nusselt number in Fig. 2. Periodic oscillations
also occur in asymmetric columns. If the viscosity is reduced
further, then the amplitude of the oscillation increases and
the periodicity is lost.

Another possible scenario is shown in Fig. 1sfd, for which
n=0.4, DT=1, andk=0.05. When the thermal conductivity
becomes too low, the system becomes unstable with respect
to forming columns. Drips of phase-separated fluid are ob-
served to come from the upper surface. The system exhibits
chaotic behavior, which is reflected in the chaotic fluctua-
tions in the Nusselt number.

Figure 1sgd shows the result of doubling the size of the
system used in Fig. 1scd, and using the parametersg
=0.0025 andn=3, such that the Rayleigh number and inter-
face width are kept the same. An approximate doubling of
stripe number is observed, suggesting that stripe width is
proportional to interface width.

Figure 3 shows a phase diagram for the system, using as
variables the temperature difference,DT, and the viscosity,n.
The symbols indicate points where simulations have been
performed, and the shaded regions are shown to clarify the

FIG. 2. The Nusselt number as a function of time.

CONVECTION-DRIVEN PATTERN FORMATION IN… PHYSICAL REVIEW E 71, 030501sRd s2005d

RAPID COMMUNICATIONS

030501-3



approximate areas for each of the different regimes. We point
out a number of features within this diagram. First, within
the periodic region, the oscillation period varied from ap-
proximately 5000 time-steps atn=0.3, to 10 000 time steps
at n=1, and the size of the oscillations became increasingly
large as the chaotic regime was approached. Second, because
of numerical instability, it was not possible for the viscosity
to be reduced belown=0.25. This means there is no region
in this diagram referring to the very large Rayleigh number
situation illustrated in Fig. 1sfd sfor this to be observed, the
thermal conductivity was dramatically reducedd. Third, close
to the line between the “regular stripes” and the “steady-state
columns” regions, there were intermediate states, in which
the boundary between the phase-separated and homogeneous
regions in Fig. 1sdd exhibited wavelike oscillations.

Since the velocity profile is similar to that observed in
Rayleigh-Bénard convection, it is natural to assume that the
Rayleigh number, which we define as

Ra =cvgDrLy
3/kn, s11d

can be used to characterize the system. Here,Dr is the den-
sity difference in equilibrium between the top and bottom of
the system. Figure 3 shows the approximate critical Rayleigh
number Racrit =2270 for stability against Rayleigh-Bénard

convection. This is somewhat larger than that analytically
derived for a single component fluid, Racrit .1707. In part,
this results from the surface tension between the domains in
Fig. 1sbd, which inhibits convection, and is characterized by
the Bond number Bo=gDrLy

2/s. However, in the simula-
tions, the Bond number is high, Bo,100, suggesting that the
effect of surface tension is not sufficient to explain the dis-
crepancy. This will be the subject of future researchf10g. We
note that the Marangoni number, Ma=rcvsds /dTdDTLy/kn,
wheres is the surface tension, was typically Ma,10. This is
less than the critical value Mac,80, implying that there is no
Marangoni convection.

Actual, physical parameters can be related to system
parameters via the kinematic viscosity,nr =nsDt /Dx2d
3sDxr

2/Dtrd, the thermal diffusivity,kr
d=sk/cvr0dsDt /Dx2d

3sDxr
2/Dtrd, and the gravitational acceleration,gr

=gsDt2/DxdsDxr /Dtr
2d, where the subscriptr denotes that the

value is in S.I. units. A typical fluid hasnr =10−6 m2 s−1, and
kr

d=10−7 m2 s−1, andgr =9.8 m s−2. By approximately match-
ing these parameters, we obtain the lattice sizeDxr
.10−5 m, corresponding toLyr

.1 mm.
It is worth noting that in phase-field models, such as the

lattice Boltzmann method, the interface width cannot be re-
duced below 3 or 4 lattice unitssaround 30mm in the ex-
ample aboved without the introduction of unphysical, noniso-
tropic disturbances of the velocity. However, in real systems,
the interface width can be of the order of nanometers to
hundreds of nanometerssdepending on the depth of the
quenchd. Therefore, since Fig. 1sgd suggests that stripe width
is proportional to interface width, in an experiment, we
would expect to observe a very large number of alternating
layers ofA andB fluid f12g.

To summarize, we find that by convecting a binary fluid
through its critical transition temperature, we observe unique
pattern formation. Since temperature gradients, surface ten-
sion and gravity play important roles during processing, the
findings reveal phenomena that could be affecting the fabri-
cation of a large class of materials. At the same time, the
findings also reveal how these factors can be manipulated to
create dynamically driven structures and thereby, create ma-
terials with unique morphologies, which can provide addi-
tional functionality to the final products.
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FIG. 3. The flow regimes for different viscosity,n, and tempera-
ture difference,DT. The periodic and chaotic areas refer to periodic
and chaotic disturbances of the columns, respectively. In the regular
stripes region, Rayleigh-Bénard convection is not observed.
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