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Using a thermal-lattice Boltzmann model, we examine the rich phase behavior that develops when partially
miscible fluids evolve in the presence of a vertical temperature gradient, which encompasses the critical
temperaturdl. of the mixture. In particular, a binaB fluid is confined between two plates in a gravitational
field. The upper plate is fixed beloW. and hence, the nearby fluid phase separatesAntch andB-rich
domains. The lower plate is fixed above the temperafyr@nd the surrounding fluid is in the homogeneous
phase. A coupling between convectiriven by the temperature gradig@ind phase separation gives rise to
unique pattern formation. A number of regimes are identified: regularly spaced stripes, convective steady-state
columns, the periodic disturbance of these columns, and finally, chaotic dripping from the upper surface. These
results highlight dynamical behavior in partially miscible mixtures.
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The lava lamps of the early 1960s not only riveted ouries uncover regimes of spontaneous pattern formation, which
attention but also embodied fascinating physics, which actuare shown in Figs. (b)-1(f). More generally, the technique
ally plays a crucial role in the growth of semiconductor crys-can potentially provide a powerful means of probing the in-
tals, the processing of polymeric materials, and the formatioierchange between temperature and structural evolution that
of heterogeneous geological structufé$ Common to all  occurs during the processing of a vast variety of materials.
these systems is the evolution of complex fluids in the pres- To optain the observed patterns, we simulate a two-
ence of a temperature gradient. We focus on one example @fimensional system, with thg direction pointing upwards
these intriguing systems: a phase-separatiBginary fluid  4gainst gravity. The upper and lower edges of the system are
that is confined between two plates, as depicted in ). 1 fiyoq at temperatureS,—~AT/2 andT,+AT/2, respectively.
The bottom plate is hot and is above the fluid’s critical tem-114 A andB fluids have the same particle massand expe-

Fheigatsucrsgg}ighllr?etri]r?tgiglg;/atk?elt?/vz(élr? iggvlg}cstigﬁloawn. dlnpha rience a repulsive interaction, whose strength is characterized
separation can potentially lead to complex dynamical beha Dy the parameteX. The Landau free-energy functional for

ior. In particular, near the bottom plate, the mixture forms athe system is

single, homogeneous phase. Since this region is relativel _ Ke 2. K 2_
hot?J the quidgbecomespIess dense, and bugoyancy drives )& \P_f <¢+ 2 (Ve)"+ 2 (Vp) gpy)dr. @)
towards the top, colder plate, where the mixture phase sepa- . )

rates into distinct domains. Gravity will act on this relatively 1he first term is the bulk free-energy densji;8]

heavier mixture and force the fluid downward, whereupon keT[ p+ & +é ) -

the entire process repeats. Therefore, one can expect notonly = i{p |n<p ) +P |n<p )]
the creation of convective patterr(similar to Rayleigh- 2 2 2 2
Bénard convection but also uniqgue morphological patterns + N p?- ¢?), (2)
within the phase-separated fluid. In this paper, we use a lat-

tice Boltzmann scheme to examine the structural evolutionvhereT is temperaturep=pa+pg is the total mass density,
and dynamics of this system. Significant progress has bee#d ¢=pa—pg is the mass density difference. The gradient
made in understanding convection in miscible binary fluidsterms, involvingx, and «,, represent the energy associated
as well as the role of interfacial phenomena in convection ofvith surface tension, and the final term is the gravitational
immiscible fluids [2-4]. However, the system we study, potential.

which encompasses phase separation and thermal convec-The dynamics of the system is determined[BY

tion, has not been extensively examined. The few existing ap+d,(pu,) =0,
experimental studies have yielded specific cases of pattern _ .
formation[1,5]; however, these studies involved thin films, d(pUy) + dg(pUglp) = = dpPug + dpoap — 9Py,

for which Marangoni convection is dominant and gravita-

tional effects can be neglected. With respect to theoretical  d(pe) + d(peu,) = = d,0u + (= Pobap + Tap)daUg,

studies_,, Araki :_;md Tanal{@] examined thg phase separation G+ A (PU) ==, (3)

of a binary mixture subjected to a horizontal temperature

gradient. Their model assumed that the density of the fluidghese equations ensure conservation of the total mass of
does not depend on temperature. A unique feature of theach component, and the total momentum and energy. Here,
model presented here is that we makeadchocassumptions U, is the fluid velocity,o,z=p1(d,Ug+dgu,) is the viscous
about the functional dependencies of the density and tenstress tensog is the acceleration due to gravity, agdis a
perature. Rather, we explicitly simulate all of the continuumunit vector in they direction. The pressure tensor, in E8g),
equations that capture the behavior of the system. Our studs given by[7]
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FIG. 1. (a) The system con-
sists of a confined binary fluid,
under the influence of gravity,
heated from below and cooled
from above. Periodic boundary
conditions were used in the di-
rection, and the system size was
chosen to allow one convective
cell. (b)—(g) show the distribution
of the density differencep, where
the white regions aré\ rich, the
dark regionsB rich, and the gray
regions correspond tap~0. A
number of different regimes are
ordered by increasing Rayleigh
number[see Eq(11)]: (b) regular
stripes with no Rayleigh-Bénard
convection (Ra=1719, (c¢) sym-
metric steady-state column@Ra
=6879, (d) asymmetric steady-
state columngRa=6875, (e) pe-
riodic disturbance of the columns
(the four frames show the evolu-
tion through one period, with time
t measured in simulations time-
steps, Ra=14 732and(f) chaotic
dripping from the upper surface
(Ra=5.1x 10°). (g) A system that
is double the size ofc) (L,=360,
L,=200, with the same Rayleigh

Paﬁ = paaﬁ + K¢&a¢&ﬂ¢ + Kpaapaﬁp: (4)

where

2, (5

K K
P=Po= ky$V2h= |V B = kpVip = 2|V p

and the bulk pressure and chemical potential are

Po= (kgT/m)p +N(p* = ), (6)
keT (p+¢
“¢=2B_m|n(27b) -2\~ k4V?¢. @)

The internal energy per unit mass, is related to the
temperature by

number.

pe=c,(kgT/m)p +\(p” = ¢°), (8)

Wherecv=§ is the specific heat per particle at constant vol-
ume. The first term comes from equipartition of energy, and
the second comes from the potential energy associated with
the repulsive interaction. Hence, there is a latent heat as-
sociated with transformations between the phase-separated
and homogeneous states.

In the most general terms, the density difference flyx,
and the thermal fluxg,, can be written a§9]

ia == aaa/“'(b - ﬁé‘aT, (9)
0o =31y + BT )i, — K3, T. (10

We ignore concentration diffusion resulting explicitly from
temperature gradients, hence, we get0. The first term on
the right-hand side of Eq10) comes from energy transport
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W ' ' ' shows the time evolution of the dimensionless Nusselt num-
:, i s i ber, Nu=fL,/kAT, which gives the energy flux between the
8 il Mty by, ] two plates f, relative to a purely conducting state. The curve
g b i T (Y ‘\‘,'"t,"‘.\:‘.i!‘-,,-‘,:'\‘.,‘ b i i saturates at N& 1.02, suggesting that the induced velocities
€ 6f! N Y are small; however, they are still important in forming the
Z 1 Chaotic dripping o regular domain spacing. For instance, if we set the fluid ve-
§ 4 ! Columns with a periocic dsturbance  + locity to zero, such _that the system is governed only by the
] Cahn-Hilliard equation, then we do not see this regular pat-
=z NS e FAmEEEEEES terning. Instead, domains coarsen in time to reduce the glo-
2 “' /' Steady-state columns ] bal interfacial energy. The regime in Figth]l suggests that
"‘gegu,a,st,ip?s Vd . ‘ an applied temperature gradient can be exploited to create
0 0 20000 40000 60000 80000 10° patterned surfaces.
Time Figure 1c) shows a final steady-state morphology when

v=1.5 andAT=1. Fluid near the upper surface orders into
alternatingA and B horizontal bands. The phase-separated
) . o fluid is heavier than that surrounding it, and is forced by
from interparticle diffusion, and the last term from energy gravity downward, through columns. The velocity flow field
conduction, wherd is the thermal conductivity. The mobil- is similar to that observed in single-component Rayleigh-
ity « is itself a function of the density difference. The sim- Bgnard convection. The pattern i is advected with the
plest choice, which is used in these simulations,dis fjyid to produce the striped column structure. Figure))1
=aqy(p’~ ¢%), whereay is a constant. Note that in the limit shows another possible steady-state situation. In this case,
when ¢=1p (the pure phasgsno diffusion occurs and the order ofA and B downward from the upper surface is
hence,a=0. different on either side of the column, and asymmetric col-
A thermal-lattice Boltzmann algorithi10] is used t0  umns are produced. This picture was taken from part of a
simulate the continuum equatiopsee Eq(3)]. The scheme  |arger simulation containing six columns and using the same
is an extension of that proposed by Palmer and Rdditr  parameters as above. In large systems, both symmetric and
for a single component fluid with no gravitational force. agsymmetric columns are observed. In the case of neutral wet-
Simulations were performed using a system of 4ize180  ting, the local ordering of phases near the surface results
andL,=100 lattice units, with periodic boundary conditions from the initial randomness. If the upper surface is preferen-
in the x direction, and nonSIip, fixed temperature, neutra”ytia”y wetted by one Component' then On|y Symmetric col-
wetting boundaries on the upper and lower plates. In eachmns form.
simulation, the initial state was given by=pg[1 For lower viscosities, the columns become unstable, re-
+(AT/2T)(y/Ly)] (to ensure that the initial pressure is ap- sulting in a regime we call “periodic disturbances;” a typical
proximately constagt ¢=0, and T=T.—(AT/L,)y, with a  example of this is given in Fig. (& (here »=0.7 andAT
small random noise added to eaghs measured relative to =1). The four frames show the time evolution of the system
the center between the plates. Unless otherwise stated, vilerough one period. It is probable that this instability results
use the parametegp=1, g=0.01, ¢y=0.2,kg=1, k=1, x,  from a competition between gravity, pushing the denser fluid
=0.2, x,=0.2,m=1, and\=2. By settingu,=0 in Eq.(7),  down, and surface tension, which drives a reduction in total
we derive the critical temperatuilg=2mpo\/kg=4. The lat- interface length. The periodicity is seen more clearly if we
tice cell size wasAx=1 and the time step was taken to be examine the Nusselt number in Fig. 2. Periodic oscillations
At=0.2, which is sufficiently small to allow all the simula- also occur in asymmetric columns. If the viscosity is reduced
tions to be numerically stable. Simulations were performedurther, then the amplitude of the oscillation increases and
for 2x 1P time steps, which was large enough to observethe periodicity is lost.
the long-time behavior of the system. The viscosityand Another possible scenario is shown in Figf)1for which
temperature differencAT were varied between simulations. v=0.4, AT=1, andk=0.05. When the thermal conductivity
At early times, fluid at a temperature beloW. phase becomes too low, the system becomes unstable with respect
separates via spinodal decomposition. In the long-time limitto forming columns. Drips of phase-separated fluid are ob-
a number of topologically distinct morphologies are identi-served to come from the upper surface. The system exhibits
fied. Examples of these are shown in Fig. 1. First, we dechaotic behavior, which is reflected in the chaotic fluctua-
scribe the main features of each regime, and then we conions in the Nusselt number.
struct a phase diagram to clarify the phase boundaries Figure 1g) shows the result of doubling the size of the
between regimes. system used in Fig. (&), and using the parameterg
When the viscosity of the fluid is sufficiently high, the =0.0025 andv=3, such that the Rayleigh number and inter-
phase-separated fluid forms regular stripes of alternating face width are kept the same. An approximate doubling of
and B-rich regions. This is illustrated in Fig.(d), wherev  stripe number is observed, suggesting that stripe width is
=3 and AT=0.5. Interestingly, the width-to-height ratio of proportional to interface width.
the domains was found to be independent of simulation pa- Figure 3 shows a phase diagram for the system, using as
rameters. Because of the temperature gradient, we observariables the temperature differendd;, and the viscosityy.
the Marangoni effect forcing fluid down the interfaces, andThe symbols indicate points where simulations have been
consequently rising up the middle of each domain. Figure 2erformed, and the shaded regions are shown to clarify the

FIG. 2. The Nusselt number as a function of time.
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1.5

convection. This is somewhat larger than that analytically
derived for a single component fluid, Ra=1707. In part,
this results from the surface tension between the domains in
Fig. 1(b), which inhibits convection, and is characterized by

Steady-state columns

1 - the Bond number BogApLilo. However, in the simula-
5> v e tions, the Bond number is high, Be100, suggesting that the
o effect of surface tension is not sufficient to explain the dis-
05 /‘//l/{egular Stiipes | crepancy. This will be the subject of future resedrt]. We
.s o -8 N | note that the Marangoni number, Mas;(do/dT)ATL,/kv,
oo o whereao is the surface tension, was typically Md.0. This is
e . . less than the critical value Ma- 80, implying that there is no
0 1 2 3 4 Marangoni convection.

Actual, physical parameters can be related to system
FIG. 3. The flow regimes for different viscosity, and tempera- parameters via the kinematic viscosity,=v(At/Ax?)

ture differenceAT. The periodic and chaotic areas refer to periodic X(AxrzlAt,), the thermal diffusivity, k?=(k/cvp0)(At/AX2)

and chaotic disturbances of the columns, respectively. In the regulak(AXrZ/Atr), and the gravitational accelerationg,

stripes region, Rayleigh-Bénard convection is not observed. =g(At2/AX)(AXr/Atr2), where the subscriptdenotes that the

is i i i i 106 m2g1
approximate areas for each of the different regimes. We poirﬁ?l_uf(ﬁ 'nqzss'_ll' l;r;:gsg é;yglcr::ls:fiugyhsgpr;gmgeli r;g& ?1
= , =9. ] -

out a number of features within this diagram. First, Withinir;g these parameters, we obtain the lattice sixe
the periodic region, the oscillation period varied from ap-_105m Corresponding’ th. ~1mm
proximately 5000 time-steps a&t=0.3, to 10 000 time steps o . o .'
at v=1, and the size of the oscillations became increasingh( Itis évc;trth noting t?ﬁtén tﬁh"".s’?'f'feld mo_gﬁls, SUCht %S the
large as the chaotic regime was approached. Second, becau gme olizmann metnod, the interface wi cannot be re-

of numerical instability, it was not possible for the viscosity aumce|: :t?clj?/v;vﬁtr?(;ui tlr?étli%?r:(?lljtgig)#ggu?]oﬁms;ga:hﬁo?])igo-
to be reduced below=0.25. This means there is no region P phy ’

in this diagram referring to the very large Rayleigh numbertrop|c disturbances of the velocity. However, in real systems,

R P— . the interface width can be of the order of nanometers to
situation illustrated in Fig. ) (for this to be observed, the .
thermal conductivity was dramatically redug¢etihird, close hundreds of nanometersiepending on the depth of the

to the line between the “regular stripes” and the “steady-statguench' Therefore, since Fig.(8) suggests that stripe width

columns” regions, there were intermediate states, in which® proportional to interiace width, in an experiment, we
uld expect to observe a very large number of alternating

the boundary between the phase-separated and homogene Wers ofA andB fluid [12],

regions in Fig. 1d) exhibited wavelike oscillations. . , . . .
Since the velocity profile is similar to that observed in h To shu_mma_r!zei we f|_n_d that by convecting z binary fl_wd
Rayleigh-Bénard convection, it is natural to assume that thé rough Its critical transition temperature, we observe unique
Rayleigh number, which we define as p_attern forma’glon. Sm.ce temperature gre_ldlents, surf_ace ten-

sion and gravity play important roles during processing, the
Ra =cngpL§‘/kv, (11)  findings reveal phenomena that could be affecting the fabri-
cation of a large class of materials. At the same time, the
can be used to characterize the system. Hepeis the den-  findings also reveal how these factors can be manipulated to
sity difference in equilibrium between the top and bottom ofcreate dynamically driven structures and thereby, create ma-
the system. Figure 3 shows the approximate critical Rayleigherials with unique morphologies, which can provide addi-
number R&'=2270 for stability against Rayleigh-Bénard tional functionality to the final products.
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